Question Number	Acceptable Answers	Reject	Mark
1 (a)(i)	Conc. Nitric acid (1) Conc. Sulfuric acid (1) Allow correct formulae Ignore state symbols Sulfuric acid and nitric acid with no mention of concentrated scores (1)		2

Question Number	Acceptable Answers	Reject	Mark
1 (a)(ii)	Pear shaped/round bottomed flask & heat source (1) Allow vertical arrow with or without the word heat Allow water bath as a heat source Liebig condenser, shown vertically (1) (Water) flow shown correctly into a jacket (1) Ignore thermometers unless stoppered Penalise (one for each): Stopper/sealed Gaps between flask and condenser Condenser inner tube extends into liquid in flask	Conical flask in diagram or label	3

Question Number	Acceptable Answers	Reject	Mark
1 (a)(iii)	Heat Speed up reaction / to overcome the activation energy / provide energy to break bonds / because activation energy for the reaction is high (1)	Just to provide energy for the reaction to start	2
	Under reflux Prevent escape of reactants / products Or As they may be flammable / harmful / volatile (1)	Just to increase the yield/make reaction go to completion	

Question Number	Acceptable Answers	Reject	Mark
1 (a)(iv)	HOCH ₂ CH ₂ N(C ₂ H ₅) ₂ Allow OHCH ₂ CH ₂ N(C ₂ H ₅) ₂		1
	Allow displayed or skeletal formulae		

Question Number	Acceptable Answers	Reject	Mark
1 (a)(v)	Reduction (1) Allow redox Tin / iron / zinc and (conc./dilute) hydrochloric acid (1) Accept correct names or formulae for both alternatives	Addition of NaOH unless clearly after the reduction Hydrogen gas and nickel (catalyst)	2
	Ignore references to tin as a catalyst Ignore conditions Allow NaBH ₄ in alkali (Pd catalyst)	LiAIH4	

Question Number	Acceptable Answers	Reject	Mark
1 (b)(i)	Moles of 2-hydroxy benzoic acid = 9.4/138 (1) (= 0.0681) So theoretical yield of aspirin = 0.0681 x 180 (1) = 12.26 g	100 x 7.77/9.40 = 82.7%	3
	% yield = 100 x 7.77/12.26 = 63.4% (1) Or		
	Moles of 2-hydroxy benzoic acid = $9.4/138$ (1) (= 0.0681)		
	Moles of aspirin = $7.77/180$ (1) (=0.0432) % yield = $100 \times 0.0432/0.0681 = 63.4/63\%$ (1)		
	Correct answer with no working 3 marks		
	Allow 1 max. if <i>M</i> r values are transposed 108%		

Question Number	Acceptable Answers	Reject	Mark
1 *(b)(ii)	Dissolve/add to impure solid in min. volume / amount (1) of hot solvent / water (1) (Filter whilst hot) Allow to cool and filter off product / (re)crystallize and filter off product (1) Wash with cold / small amount of solvent / water (then dry) (1)	Just 'small/little amount of water' Named solvents other than water – penalise once	4

Question Number	Acceptable Answers	Reject	Mark
1	It reduces yield as some product remains in solution	Just `transfer	1
(b)(iii)	Allow stated and explained errors due to transfer e.g. left on filter paper	errors'	

Question Number	Acceptable Answers	Reject	Mark
1 (c)(i)	$CH_3COCI / (CH_3CO)_2O / ethanoyl chloride / ethanoic anhydride$	Ethanoic acid	1
	If both name and formula are given then both must be correct		
	Allow acetyl chloride / acetic anhydride		
	Ignore any additional information		
	Allow displayed formulae		

Question Number	Acceptable Answers	Reject	Mark
1 (c)(ii)	(Lessen) risk of overdose / as paracetamol is toxic in larger doses/ as paracetamol is harmful in larger doses / reduce risk of taking medication over a longer time period than necessary / reduce risk of addiction		1

Question Number	Acceptable Answers	Reject	Mark
1 (c)(iii)	Net forces between paracetamol and water are less than the forces between water and water and / or paracetamol and paracetamol Allow benzene / ring doesn't interact with water Allow benzene ring is hydrophobic / non polar / only forms London forces / can't form hydrogen bonds	Just paracetamol / benzene ring is large / steric hindrance	1

Question Number	Acceptable Answers	Reject	Mark
2(a)(i)	C 60/12 = 5 H 8/1 = 8		1
	O 32/16 = 2 ALLOW 1 mol = 100 g		
	So 60 %C = C_5 , etc		

Question Number	Acceptable Answers		Reject	Mark
2(a)(ii)	C=C			4
	Test : add bromine water/Br ₂ (a	iq) (1)	Bromine/Br ₂ /Br ₂ (I)	
	Result : From yellow/brown/red brown/orange to		clear for colourless	
	colourless/decolorises	(1)		
	OR			
	Test : add (acidified) potassium manganate((VII)) (solution) (1)	ו	clear for colourless	
	Result : goes from pink/purple t colourless/brown	to (1)		
	Test : add alkaline potassium manganate((VII)) (solution) (1)		PCL /LiAlH as tost	
			$PCI_5/LiAIH_4$ as test	
	Result: goes green	(1)	NaOH/NaOH(aq)	
	СООН:			
	Test :		colourless gas evolved	
	add NaHCO ₃ /Na ₂ CO ₃ /sodium carbpnate (solution)	(1)		
	Result:			
	Fizzes/bubbles/large volume neutralized ((1)		

lir	LLOW gas g mewater clo DR	given off that turns oudy			
т	est: with	blue litmus	(1)		
R	lesult : tur	ns red	(1)		
in in	ndicator, ind	be with any other cluding universal th the correct initia our	I	Add sodium colourless gas	
	LLOW H meter		(1)	evolved	
pl	H 4-6		(1)		
0)R				
	f est : add I₂SO₄ (and v	ethanol with conc warm)	(1)		
	lesult : giv f ester	es pleasant/fruity s	mell (1)		
0)R				
т	est: add m	agnesium	(1)		
	lesult: fizzi ydrogen)	ng/bubbles etc (of	(1)		
	LLOW gas g vith a squea	given off that burns iky pop	5		

Question Number		Reject	Mark
2(b)(i)	Explanation of precedence/priority in terms of atomic numbers/masses of the attached groupsORHighest-precedent/priority groups on each carbon are on opposite sides of 	Both CH ₃ /methyl groups on the same side so Z (0/2)	2
	Mark independently		

Question Number	Acceptable Answers	Reject	Mark
2(b)(ii)	45 COOH ⁺ /CO ₂ H ⁺ (1)		2
	55 C₄H ₇ ⁺		
	OR		
	C ₃ OH ₃ ⁺ (1)		
	ALLOW Structural/displayed formulae of ions		
	Absence of + charge (1 max)		

Question Number	Acceptable Answers	Reject	Mark
2(b)(iii)	If they say yes (0)		1
	(No) (Cleavage of the C—COOH bond in) both compounds gives fragment(s) of the same mass OR Both give the same peak(s)/fragment(s)	`No' on its own	
	Both give $CO_2H^+/C_4H_7^+$ fragments		
	The mark can be scored by referring to just one of the fragments/peaks/masses.		

Question Number	Acceptable Answers		Reject	Mark
*2(c)(i)	C is CH ₃ CHO (alone)	(2)	CH ₃ COH 1 max	6
	D is $CH_3COCOOH$ (alone)	(2)		
	so tiglic acid must be B	(1)		
	tiglic acid mark can only be awarded if correct structures of either C or D are g	iven.		
	Any one of the following			
	C must be an aldehyde	(1)		
	D is a ketone	(1)		
	Mention that CH ₃ CO present in either/bo	oth		
	compounds (because of formation of iodoform)	(1)		
	If one or both of the structures are income any of the last 3 marks can be awarded max 5	rrect		
	If C and D are fully correct, but the wron way round max 5	ng		

Question Number	Acceptable Answers	Reject	Mark
2(c)(ii)	Doesn't distinguish <i>E</i> - isomer from <i>Z</i> - isomer/geometric isomers (so no) OR Doesn't distinguish which sides of C=C functional groups are on	Just isomers/ stereoisomers/ enatiomers	1

Question Number	Acceptable Answers		Reject	Mark
2(d)(i)	CH ₃ CHO	(1)	CH₃COH	4
	ACCEPT displayed or skeletal			
	Step 1			
	(heat)using acidified potassium dichromate/or $H^+/Cr_2O_7^{-2-}$	(1)	Manganate VII/KMnO₄	
	distil (product as formed) condit on dichromate	ional (1)	Reflux	
	Step 2			
	HCN with KCN		HCN alone	
	OR			
	KCN with H ⁺ /acid			
	OR			
	KCN with (cold) NaOH(aq)/alkali	(1)		
	ALLOW HCN with NaOH/alkali			
	For step 2 Ignore conditions e.g. references to heat	any		

Question Number	Acceptable Answers	Reject	Mark
2(d)(ii)	Nucleophilic addition	Nutro philic addition	1
	Any recognisable spelling of 'philic' and addition, either order		
	Both words needed	Any other or additional words	

Question Number	Acceptable Answers	Reject	Mark
*2(d)(iii) QWC	Ethanal is planar (at the reaction site)	Intermediate is planar Square planar	2
	OR		
	Ethanal is a planar molecule (1)		
	Attack (from CN ⁻ to give the cyanohydrin) is (equally likely) from either side/above or below/from both sides (of the molecule) (so a racemic mixture is formed) (1)	Can attack carbocation from either side/any reference to SN1/SN2	
	Mark independently		

Question Number	Acceptable Answers	Reject	Mark
2(d)(iv)	Receptors for the compound in the body are often stereospecific so only one stereoisomer is pharmacologically active		1
	OR		
	Body recognises one (stereo)isomer		
	ALLOW		
	Only one (stereo)isomer is active		
	OR		
	One/the other isomer may be toxic/dangerous/harmful		
	OR		
	One isomer destroys body cells		
	OR		
	(Different) isomers have different biological/pharmacological/biochemical properties		

PhysicsAndMathsTutor.com